UG MICROBIOLOGY

UCMBK18 - MICROBIAL ECOLOGY AND SOIL MICROBIOLOGY

Year 2020	Course Code	Title Of The Course	Course Type	Course Category	H/W	Credits	Marks
SEM: VI	UCMBK20	Microbial Ecology and Soil Microbiology	Theory	Core	5	<u>5</u>	100

Course Objective: To facilitate students understanding on the microorganisms present in their environments and their habitat, microbial interaction, biogeochemical cycling and waste management.

Course Outcomes (CO):

At the end of the course, the learners will be able to;

CO1: Compare the role of microbial communities in the environment and discuss on the significance of Aero and Water Microbiology

CO2: Assess on the microbiological aspects of management of sewage and design the treatment procedures.

CO3: Outline on the importance of bioremediation and biodegradation of xenobiotic compounds.

CO4: Familiarize with microorganisms of soil and their role in biogeochemical cycle.

CO5: Comprehend the importance of plant- microbe interactions.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	Н	Н	Н	M	L	M
CO2	Н	Н	Н	L	L	M
CO3	Н	M	M	Н	M	M
CO4	Н	M	Н	Н	M	M
CO5	Н	M	Н	M	M	M

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	Н	Н	L	M
CO2	Н	L	Н	M	L	M
CO3	Н	M	Н	L	L	M
CO4	Н	Н	Н	M	L	L
CO5	Н	L	Н	L	L	M

H – HIGH (3) M – MODERATE (2) L – LOW (1)

COURSE SYLLABUS

UNIT I: Aero Microbiology and Water Microbiology. (15 hours)

- 1.1 Microbes of air, Droplet, Droplet nuclei, aerosol. Assessment of air quality, solid-liquid impingement method. (K1,K2,K3,K4)
- 1.2 Brief account of air borne transmission of microbes and diseases. (K1,K2)
- 1.3 Microbiology of water Types of water- potability of water (K1,K2)
- 1.4 Microbial assessment of water quality. (K1,K2,K3,K4)
- 1.5 Brief account on water borne diseases. (K1,K2)
- 1.6 Municipal water treatment method process. (K1,K2,K3,K4)

UNIT II: Sewage treatment. (15 hours)

- 2.1 Sewage– Chemical and Microbiological characteristic of sewage. (K1,K2)
- 2.2 Types of wastes Characterization of solid and liquid waste (K1,K2)
- 2.3 Sewage treatment methods—Primary treatment. (K1,K2,K3)
- 2.4 Sewage treatment Secondary, anaerobic methanogenesis, aerobic trickling filters, activated sludge, oxidation pond. (K1,K2,K3)
- 2.5 Tertiary treatment- sewage disinfection. (K1,K2,K3)
- 2.6 Utilization of solid and liquid wastes- saccharification gasification composting. (K1,K2,K3)

UNIT III: Biodeterioration and remediation. (15 hours)

- 1.1 Bioaugmentation, recalcitrants/xenobiotic compounds -Bioremediation, biodeterioration-Definition. (K1,K2)
- 1.2 Deterioration of paper. (K1,K2,K3)
- 1.3 Deterioration of leathers. (K1,K2,K3)
- 1.4 Deterioration of wood. (K1,K2,K3)
- 1.5 Deterioration of textiles /fabrics. (K1,K2,K3)
- 1.6 Metal corrosion Biocorrosion. (K1,K2,K3)

UNIT IV: Microbiology of soil. (15 hours)

1.1 Microorganisms in soil – qualitative and quantitative microflora of different soils. (K1,K2,K3)

- 1.2 Role of microorganisms in soil fertility. Enumeration of microorganisms in soil. (K1,K2,K3)
- 1.3 Factors affecting soil microflora moisture, pH, temperature, organic matter, agronomic practices. (K1,K2,K3)
- 1.4 Bio-Geo chemical cycles Nitrogen cycle (K1,K2)
- 1.5 Phosphorus cycle and sulphur cycle. (K1,K2)
- 1.6 Carbon cycle and iron cycle. (K1,K2)

UNIT V: Plant - Microbe interactions. (15 hours)

- 1.1 Overview on Plant Microbe interactions. (K1,K2)
- 1.2 Inter relationships between plants and Microorganisms Rhizosphere, Rhizoplane, Phyllosphere, Spermosphere their importance in plant growth. (K1,K2)
- 1.3 Mycorrhiza ecto and endo mycorrhiza AM fungi distribution and importance. (K1,K2, K3)
- 1.4 Lichens and their role. (K1,K2)
- 1.5 Symbiotic Nitrogen fixation Root nodule bacteria. (K1,K2, K3)
- 1.6 Non-symbiotic nitrogen fixation (K1,K2,K3)

TEXT BOOKS:

- Vijaya Ramesh K (2004). Environmental Microbiology. 1st edition, MJP publishers. Chennai
- 2. Joseph C. Daniel (1999). Environmental aspects of Microbiology. 1st edition, Bright Sun publications, Chennai.
- 3. Subba Rao N.S (2004). Soil Microbiology. 4th edition, Oxford and BH Publishing Co.Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- Murugesan A.G and Rajakumari C (2005). Environmental Science and Biotechnology. 1st edition, MJP Publishers, Chennai.
- 2. Singh D.P and Dwivedi S.K (2005). Environmental Microbiology and Biotechnology. 1st edition, New Age International (P) Ltd., New Delhi.
- 3. Mishra RR (2004). Soil Microbiology. 1st edition, CBS Publishers and distributors, New Delhi.
- 4. Rangaswami G and Mahadevan A (2002). Disease of Crop Plants in India. 4th edition, PHI Learning (P) Ltd., New Delhi.

5. Atlas R.M. and Bartha R (1992). Microbial Ecology, Fundamental and Application, 3rd edition, Bengamin and Cummings. United States.

OER:

E- CONTENT FOR LEARNING:

- 1. http://www.learnerstv.com/
- 2. http://webcast.berkeley.edu/
- 3. http://cosmolearning.org/
- 4. http://www.world-lecture-project.org/
- 5. http://cec.nic.in/
- 6. http://epgp.inflibnet.ac.in/
- 7. http://www.co-learn.in/

UAMBB20- ALLIED IV: MICROBIOLOGY – II

Year 2020	Course Code	Title Of The Course	Course Type	Course Category	H/W	Credits	Marks
SEM: IV	UAMBB20	Allied IV: Microbiology-II	Theory	Allied	4	4	100

Course Objective: To make the students know about the third major component of the biotic system and provide a detailed insight on the significance microbes in different environments.

Course Outcomes (CO):

At the end of the course, the learners will be able to;

CO1: Discuss the role of microorganisms in soil and biogeochemical cycles.

CO2: Disseminate knowledge on the potability of water, purification of municipal water supplies and sewage treatment process

CO3: Communicate sources of airborne pathogens and the diseases caused.

CO4: Explain Food borne diseases and outline on the contamination, spoilage and preservation of food.

CO5: Compile on different types of fermentation and fermented microbial product.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	Н	M	Н	Н	L	M
CO2	Н	Н	Н	M	L	M
CO3	Н	Н	Н	L	L	M
CO4	Н	Н	Н	L	L	M
CO5	Н	Н	Н	L	L	Н

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	Н	Н	L	M
CO2	Н	Н	Н	M	L	M
CO3	Н	Н	Н	L	L	M
CO4	Н	Н	Н	L	L	M
CO5	Н	Н	Н	L	L	Н

H - HIGH(3)

M - MODERATE(2)

L-LOW(1)

COURSE SYLLABUS

UNIT I: Microbiology of soil and Biogeo chemical cycle. (12 hours)

- 1.1 Microbiology of soil Microbes in soil. (K1,K2)
- 1.2 Rhizosphere, rhizoplane and phylloplane. (K1,K2)
- 1.3 Nitrogen fixation (symbiotic and non-symbiotic) nitrifying and denitrifying bacteria. (K1,K2)
- 1.4 Biogeo chemical cycle Carbon cycle, Nitrogen cycle. (K1,K2)
- 1.5 Sulphur cycle and phosphorus cycle. (K1,K2)
- 1.6 Phosphate solubilizers and sulphur bacteria -Bacterial Biofertilizers. (K1,K2)

UNIT II: Microbiology of water. (12 hours)

- 1.1 Microbiology of water types of water potable water. (K1,K2)
- 1.2 Municipal water purification. (K1,K2)
- 1.3 Sewage treatment process An overview. (K1,K2)
- 1.4 Primary, Secondary and tertiary treatment process. (K1,K2)
- 1.5 Sewage disinfection and disposal. (K1,K2)
- 1.6 Water borne diseases. (K1,K2)

UNIT III: Aero Microbiology. (12 hours)

- 1.1 Microbiology of air- An overview. (K1,K2)
- 1.2 Indoor and outdoor microflora. (K1,K2)
- 1.3 Distribution and source of airborne organisms Droplet, Droplet nuclei and Infectious dust. (K1,K2)
- 1.4 Assessment of air quality. (K1,K2, K3)
- 1.5 Air sanitation. (K1,K2, K3)
- 1.6 Airborne diseases. (K1,K2)

UNIT IV: Food Microbiology (12 hours)

- 1.1 Food Microbiology An introduction. (K1,K2)
- 1.2 Food preservation techniques- asepsis, high temperature and low temperature. (K1,K2,K3)
- 1.3 Food preservation techniques drying, radiation and food additives. (K1,K2, K3)
- 1.4 Microbial spoilage of food vegetables and fruits, cereal and cereal products. (K1,K2)
- 1.5 Microbial spoilage of food meat and meat products, milk and milk products. (K1,K2)
- 1.6 Food borne diseases. (K1,K2)

UNIT V: Fermentation and Industrial production. (12 hours)

- 5.1 Fermentation- types of fermentation. (K1,K2)
- 5.2 Fermentor- structure and types. (K1,K2)
- 5.3 Industrial production Antibiotic (Penicillin). (K1,K2)
- 5.4 Industrial production alcohol (Ethanol). (K1,K2)
- 5.5 Industrial production organic acid (acetic acid). (K1,K2)
- 5.6 Industrial production Vitamin (B12). (K1,K2)

TEXT BOOKS:

- 1. Frazier W.C. and West Hoff D.C (2008). Food Microbiology. 4th edition. Mc Graw Hill, New York.
- 2. Joseph C. Daniel (1999). Environmental aspects of Microbiology. 1st edition, Bright Sun publications, Chennai.
- 3. Subba Rao NS (2004). Soil Microbiology. 4th edition, Oxford and BH Publishing Co.Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- Vijaya Ramesh K (2004). Environmental Microbiology. 1st edition, MJP publishers. Chennai
- 2. Casida, J.E (1986), Industrial Microbiology. 1st edition. Wiley Eastern publishers. UK
- 3. Patel A.H (2001). Industrial Microbiology. 3rd edition. Mac Millan India ltd, Chennai.

OER:

E-books

- 1. www.gutenberg.org
- 2. www.free-ebooks.net
- 3. www.e-booksdirectory.com

Video lessons

- 1. www.learnerstv.com
- 2. www.webcast.berkeley.edu
- 3. www.cosmolearning.org

UGMBB20 – NON MAJOR ELECTIVE: WASTE WATER MICROBIOLOGY

Year 2020	Course Code	Title Of The Course	Course Type	Course Category	H/W	Credits	Marks
SEM: V & VI	UGMBB20	Waste water Microbiology	Theory	Non Major Elective	3	2	100

Course Objective: To provide in depth knowledge on the significance of waste water and on waste water and its treatment cum recycling methods.

Course Outcomes (CO):

At the end of the course, the learners will be able to;

CO1: Use the available technologies for physical, chemical and biological treatment of municipal water.

CO2: Demonstrate the microbiological analysis of potable water and brief out water borne diseases.

CO3: Outline bioremediation of pesticides, heavy metals and oil spills.

CO4: Explain the sewage treatment process.

CO5: Utilization of solid and liquid waste.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	Н	L	Н	L	L	Н
CO2	Н	M	Н	M	L	M
CO3	Н	Н	Н	L	M	Н
CO4	Н	L	Н	L	L	M
CO5	Н	L	Н	L	L	M

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	Н	Н	L	L	M
CO2	Н	M	Н	L	M	M
CO3	Н	M	Н	L	Н	Н
CO4	Н	Н	Н	L	M	Н
CO5	Н	M	Н	L	M	M

H - HIGH(3)

M - MODERATE(2)

L-LOW(1)

COURSE SYLLABUS

UNIT I: Microbiology of water and treatment of municipal water supplies. (9 hours)

- 1.1 Microbiology of water. (K1,K2)
- 1.2 Types of water. (K1,K2)
- 1.3 Potability of water. (K1,K2)
- 1.4 Sources of drinking water. (K1,K2)
- 1.5 Treatment method of municipal water supplies Sedimentation and filtration. (K1,K2)
- 1.6 Disinfection of water- chlorination. (K1,K2)

UNIT II: Detection of potability of water and water borne diseases. (9 hours)

- 2.1 Indicators of faecal contamination. (K1, K2)
- 2.1 Methods to detect potability of water samples: Standard qualitative procedure: Most Probable Number test. (K1,K2, K3)
- 2.2 Membrane filtration technique. (K1,K2, K3)
- 2.3 Water-borne diseases- An overview. (K1,K2)
- 2.4 Bacterial, viral and Protozoal water borne diseases- their etiological agents and clinical symptoms. (K1,K2)
- 2.5 Prevention and control measures. (K1,K2, K3)

UNIT III: Water pollution. (9 hours)

- 3.1 Water Pollution Definition, sources of water pollution. (K1, K2)
- 3.2 Pollution of water bodies by heavy metals. (K1, K2)
- 3.3 Removal of heavy metals by biosorption. (K1, K2)
- 3.4 Removal of pesticides. (K1, K2)
- 3.5 Marine oil spill pollution. (K1, K2)
- 3.6 Removal of oil spills by using microorganisms. (K1, K2)

UNIT IV: Sewage treatment process. (9 hours)

- 1.1 Characteristics of sewage and objectives in sewage treatment. (K1, K2)
- 1.2 Biological treatment of sewage: preliminary treatment. (K1, K2)
- 1.3 Secondary treatment activated sludge process. (K1, K2)
- 1.3 Trickling filters. (K1, K2)
- 1.4 Anaerobic sludge digestion. (K1, K2)
- 1.5 Household waste water treatment. (K1, K2, K3)

UNIT V: Utilization of solid and liquid waste. (9 hours)

- 5.1 Utilization of solid and liquid waste: Industrial re-use of effluents. (K1, K2)
- 5.2 Municipal reuse of effluent. (K1, K2)
- 5.3 Agricultural reuse of effluent (crop irrigation). (K1, K2)
- 5.4 SCP production. (K1, K2)
- 5.5 Composting (fertilizer). (K1, K2)
- 5.6 Aquaculture. (K1, K2)

TEXT BOOKS:

- 1. Vijaya Ramesh K (2004). Environmental Microbiology. 1st edition, MJP publishers. Chennai.
- 2. Atlas R.M. and Bartha R (1992). Microbial Ecology, Fundamental and Application, 3rd Edition, Bengamin and Cummings. United States.

REFERENCE BOOKS:

- 1. Joseph C. Daniel (1999). Environmental aspects of Microbiology. 1st edition, Bright Sun publications, Chennai.
- 2. Murugesan A.G and Rajakumari C (2005). Environmental Science and Biotechnology. 1st edition, MJP Publishers, Chennai.

OER:

DIGITAL LIBRARIES:

- 1. http://www.loc.gov/
- 2. http://library.clark.edu/
- 3. http://www.dli.ernet.in/
- 4. http://www.loc.gov/education/
- 5. http://www.pdfdrive.com